AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

Leaving Certificate Examinations 2002

Physics

Ordinary Level

Marking Scheme

Introduction

In considering this marking scheme the following points should be noted.

1. In many instances only key words are given, words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
3. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
4. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
5. Mathematical errors carry a penalty of one mark.
6. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
7. The abbreviation h / m denotes hit or miss, i.e. the answer is either correct or not.
8. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper determine the detail required in any question. Therefore, in any instance, it may vary from year to year.

OUTLINE MARKING SCHEME

SECTION A (120 MARKS)

Three questions to be answered.

$\mathbf{1}$		$\mathbf{2}$		$\mathbf{3}$		$\mathbf{4}$	
Draw	4×3	Set vibrating	$6+3$	Draw	3×3	Name	6 or 3
Describe	3×3	Adjust length	2×3	Describe	$4+3$	Explain	3×3
What	$6 \mathrm{~h} / \mathrm{m}$	Complete	2×3	Show	2×3	How	$6 \mathrm{~h} / \mathrm{m}$
Outline	3×3	Graph	4×3	Using formula	6×3	Graph	4×3
Precaution	4 or 2	What	$3+2+2$			Estimate	7 or 5 or 3

SECTION B (280 MARKS)

Any five questions to be answered.

5 any eight parts	6	7	8
(a) $7 \mathrm{~h} / \mathrm{m}$ (b) 7 or 4 (c) 7 or 4 (d) 7 or 4 (e) 7 or 4 (f) $4+3$ (g) $4+3$ (h) 7 or 4 (i) 7 or 4 (j) 7 or 4	Define $2(2 \times 3)$ Complete 2×3 What $\mathrm{L}>\mathrm{W}$ 6 What $\mathrm{T}>\mathrm{R}$ 6 Calculate work 2×3 Calculate acceleration 3×3 What force 2×3 Explain $3+2$	Explain $2(6+3)$ Describe 4×3 Name $6 \mathrm{~h} / \mathrm{m}$ What 2×3 Describe 2×3 Uses $6+2$	Explain $2(2 \times 3)$ One difference 6 or 3 Calculate R 3×3 Calculate I_{c} 2×3 Calculate I_{3} 2×3 How 2×3 Draw 6 or 3 Give 5 or 3
9	10	11	
What 3×3 Describe 4×3 Name 2×3 Name 3×3 What 3×3 How 6 or 3 What 5 or 3	What 3×3 Name 4×3 Functions 2×6 Deflected $6 \mathrm{~h} / \mathrm{m}$ Use 3 Sketch $3 \times 3+2$ Why 3	(a) $4+3$ (b) 7 or 4 (c) 7 or 4 (d) 7 or 4 (e) 7 or 4 (f) $4+3$ (g) 7 or 4 (h) $4+3$	

Q 12: any two parts

$\mathbf{1 2}(\mathbf{a})$	$\mathbf{1 2}(\mathbf{b})$		$\mathbf{1 2}(\mathbf{c})$		$\mathbf{1 2}(\mathbf{d})$		
Pressure	$2 \times 3+3$	Define	3×3	Define	2×3	Lines	2×3
Instrument	6 or 3	Calculate E	3×3	What	$2 \times 3+4$	Describe	4×3
Explain	3×3	Calculate P	2×3	Demonstrate	4×3	Two factors	2×3
Calculate	4	Why	$4 \mathrm{~h} / \mathrm{m}$			Device	4

Section A (120 marks)

Three questions to be answered.

Question $1 \quad 40$ marks

Draw 4×3
labelled diagram to show:

falling object/ball	// pendulum bob	3
timer: millisecond-clock/stop-watch/light gates and timer/other valid variation	3	
stop/start mechanism	// fixed point	3
detail e.g. means of suspending ball,	// split cork, etc	3

Note: no labels, deduct 2
Describe $\quad 3 \times 3$
release ball/flick switch (which starts the timer) // swing pendulum 3
timer stops (when ball hits trapdoor) // time for n oscillations 3
record the time (on the timer)/divide/get average 3
record the time may be implied
What $\quad 6 \mathrm{~h} / \mathrm{m}$
distance // length 6
Outline $\quad 3 \times 3$
substitute (for t and s) into the equation 3

$$
g=\frac{2 s}{t^{2}} / s=\frac{1}{2} g t^{2} \quad / / g=\frac{4 \pi^{2} l}{T^{2}} / T=2 \pi \sqrt{\frac{l}{g}} \quad 2 \times 3
$$

valid partial answer e.g. $g=\frac{2 s}{t} \quad \| / _g=\frac{4 \pi l}{T^{2}}$
draw a graph (of T^{2} versus l)
Precaution 4 or 2
any valid specific precaution, which has not already been awarded marks e.g. use the smallest time value recorded for $t \quad / /$ swing through small angle any valid general precaution e.g. repeat the experiment a number of times

Question 240 marks

Set vibrating $6+3$

tuning fork
// signal/frequency generator
other relevant detail e.g.
fork (vibrating) on the wire/bridge/sonometer // current in wire/(U-) magnet/ current is a.c.
a labelled diagram may merit marks
Adjust length

$$
\mathbf{2} \times \mathbf{3}
$$

move
bridge

Complete 2×3

$\frac{\mathbf{1}}{\text { length }} / \mathbf{m}^{-1}$	5.0	3.0	2.2	2.0	1.5	1.3	1.25

any three correct
another three correct
Graph
4×3
label axes correctly,(f on the vertical axis)- name/symbol/unit acceptable
plot another three points correctly
straight line
if graph paper is not used maximum mark 3×3

$$
\text { Fundamental frequency against } \frac{1}{\text { Length }}
$$

What
 $3+2+2$

(straight) line (through the origin)
(implies that the frequency is) inversely

Question 3	$\mathbf{4 0}$ marks
Draw	3×3

labelled diagram to show:

concave mirror	3	
object e.g. pin	$/ /$ ray box	3
search pin / screen		3

Note: no labels, deduct 2

Describe $4+3$
move search pin // move screen 4
until search pin coincides with image/ no parallax // until image is found/ clear
image 3
accept valid alternatives
a labelled diagram may merit marks
Show 2×3
distance from mirror to object (in front of mirror) shown for u 3
distance from mirror to image shown for v 3
reverse order
Using formula 6×3
any correctly substituted formula e.g. $\frac{1}{f}=\frac{1}{20}+\frac{1}{64}$
any calculated value for $\frac{1}{f} \quad$ e.g. $0.066,0.057,0.049,0.049 \quad 3$
any consistent value for f e.g. 15.2, 17.67, 20.2, 20.6
another correctly substituted formula any other correct value for $f / \frac{1}{f} \quad 3$
two more calculated values for $f / \frac{1}{f}$
average value for $f, \quad 18.4 \pm 0.2$ (cm)
accept other valid methods e.g. correct graph of $\frac{1}{u}$ against $\frac{1}{v}$ and correct reading for $\frac{1}{f}$
correct graph of $\frac{1}{u}$ against $\frac{1}{v}$
correct values for $\frac{1}{u}$ and $\frac{1}{v}$
scaled diagrams fit the scheme
averages u and v first and gets $f \approx 20(\mathrm{~cm})$ maximum mark 4×3 points

Question 4 40 marks

Name 6 or 3

ohmmeter/multimeter 6
(milli)ammeter/galvanometer/voltmeter
Explain $\quad 3 \times 3$
turn on 3
bunsen/heater 3
beaker/container with liquid 3
Note: no labels, deduct 2
How $\quad 6$ h/m
thermometer 6

Graph $\quad \mathbf{4} \times \mathbf{3}$
label axes correctly- name/symbol/unit acceptable 3
plot four points correctly 3
plot another three points correctly 3
smooth curve 3
if graph paper is not used, maximum mark 3×3

Estimate
 7 or 5 or 3

$35 \pm 3\left({ }^{\circ} \mathrm{C}\right)$ or value consistent with graph
horizontal line drawn from, 740Ω on, the vertical axis to the curve and dropped vertically to the temperature axis
horizontal line drawn from, 740Ω on, the vertical axis to the curve

SECTION B (280 Marks)

Five questions to be answered

Question 5 any eight parts 56 marks

Take the best $\mathbf{8}$ from 10 parts

(a) force / resists (motion)
example e.g. applying brakes, rubbing hands together, etc.
(b) 40000 (J)
correctly substituted formula
(c) $\mathrm{A} \rightarrow 2, \quad \mathrm{~B} \rightarrow 3, \quad \mathrm{C} \rightarrow 1$
one correct
(d) increases conductivity/heat transferred/lost //decreases insulation
reference to insulation/heat loss in context
reference to heat
(e) sound (intensity level)
partial answer
(f) converging/convex
0.02 (m)/2 (cm)
(g) (physical property that) changes (measurably/continually)
with temperature (change)
valid example
(h) complete example e.g. pitch of moving sound source changes as it goes past 7 definition/incomplete example e.g. when a car passes by,
(i) prevent (current) overload, prevent electrocution, safety, prevent fire reference to fuse/stops current
(j)

correct distribution of negative charge/all positive charge near pointed end

Question 656 marks

Define

(i) velocity:
$2(2 \times 3)$
rate of change $/ /$ distance \div time / speed 3 (of) displacement //in particular direction 3
correct unit
$\begin{array}{llc}\text { (ii) acceleration: } & \begin{array}{l}\text { rate of change // change in velocity/speed } \\ \text { of velocity/speed } / /\end{array} \text { per second } \\ & \mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} & 3\end{array}$
correct unit
Complete 2×3
acted on by a/there is a (in correct context) 3
(resultant/external) force 3
What happens $L>W \quad 6$
climbs/ goes up/ gets higher / accelerates upwards 6
What happens $\mathbf{T}>$ R 6
accelerates/ goes faster
accelerates merits 1×6 only, if it appears in both what happens, unless qualified
Calculate work $\quad 2 \times 3$
$W=T \times s \quad /(20000 \times(500 \times 1000)) \quad 3$
$1 \times 10^{10}(\mathrm{~J}) \quad 3$
Calculate acceleration $\quad 3 \times 3$
$u=60, v=0, t=(2 \times 60) /$ rearranged equation $\quad a=(v-u) / t \quad 3$
$0=60+a(120) / a=(0-60) / 120 \quad 3$
$a=-0.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
What force $\quad 2 \times 3$
$F=50000 \times 0.5 \quad 3$
$25000(\mathrm{~N}) \quad 3$
answer consistent with incorrect acceleration above (2×3)
Explain 3 +2
moving (with constant velocity)/ thrown forward/ fall/ /feel lighter 3
because no (external) force acts 2

Question $7 \mathbf{5 6}$ marks

Explain $\quad 2(6+3)$

(refraction is the) bending/changing direction/change of velocity of waves 6 at the boundary/surface/ (when waves) travel from one medium to another 3 accept light/sound for waves
a labelled diagram or correct example may merit marks
(diffraction is the) spreading out of waves/light/sound 6
at the other side / at an obstacle/opening 3
a labelled diagram or correct example may merit marks

Describe $\quad 4 \times 3$

apparatus: (white light) source, obstacle with a slit, prism/(diffraction) grating any two 2×3
method: shine the (narrow beam of) light through the prism/grating 3
observation: (the white) light is split into (seven) colours 3
a labelled diagram may merit marks

Name $\quad 6 \mathrm{~h} / \mathrm{m}$
refraction, diffraction, polarisation, interference, same speed, reflection, transverse (waves), can travel through vacuum
any one
What 2×3
$f=\left(3 \times 10^{8}\right) \div 100 \quad 3$
$=3 \times 10^{6}(\mathrm{~Hz}) \quad 3$
$3 \times 10^{8}=f \times 100 / f=\frac{\mathrm{c}}{\lambda}$
Describe $\quad 2 \times 3$
apparatus: (blackened) thermometer (bulb)/thermopile/infrared camera/night vision binoculars, etc.
method: the temperature rises/picture shows (presence of infrared)/etc. 3 a labelled diagram may merit marks

Uses $\quad 6+2$
radar, (mobile) phones, speed trap, (microwave) oven/cooking/defrosting any one6 any other 2

Question 856 marks

Explain	$\mathbf{2 (2 \times 3)}$	
potential difference:	work done/energy	3
moving (unit) charge	3	
unit		3
electric current:	electron/charge	3
	flow/moving	3
unit		3

One difference 6 or 3
(charge carried by) holes/two types of charge carriers/correct variation of resistance with temperature6
conduction easier/better in metals
any reference to resistance/conduction
Calculate $\mathbf{R} \quad \mathbf{3} \times \mathbf{3}$
correct substitution $/ \frac{1}{R}=\frac{1}{3}+\frac{1}{6} \quad 3$
$\frac{1}{2}$
$\mathrm{R}=2(\Omega)$3

Calculate I in circuit $\quad 2 \times 3$

$1.5=\mathrm{I}(2) \quad / / \quad(I=) \frac{V}{R} \quad / / \quad \frac{1.5}{2} \quad 3$
0.75 (A)

Calculate I in $3 \Omega \quad 2 \times 3$
$1.5=I(3) \quad / / \quad \frac{1.5}{3} \quad / /$ (divide in) ratio $6: 3 \quad 3$
0.5 (A)

How 2×3
dope // add (impurity) 3
(with) B/Al/Ga/In/group-3 element/extra holes/short of (lattice) electrons 3
Draw 6 or 3

//

reverse bias
Give 5 or 3
rectifiers, transistors, diodes, thermistors, thermometers, radios/TV, etc. any two 5 one use
Question 956 marks
What 3×3
change in (magnetic flux)/field 3
generates 3
emf/ E / I 3
Describe 4×3
apparatus e.g. coil, magnet, meter any one 3 all 2×3
procedure e.g. move magnet/coil 3
observation e.g. deflection on meter 3
a labelled diagram may merit marksName2×3
computer, radio, TV, doorbell, washing machine, mobile phone chargers, etc.
any two 2×3
Name 3×3
A primary/input coil 3
B (iron) core 3
C secondary/output coil 3
A and C reversed maximum 2×3
What 3×3
substituted equation e.g. $\frac{230}{V_{\mathrm{o}}}=\frac{400}{100}$ 3
substituted equation rearranged e.g. $V_{o}=230\left(\frac{1}{4}\right)$ 3
57.5 (V) 3
How 6 or 3
laminated (core) 6
(soft) iron(3)
What 5 or 3
$90 \% / 0.9$ of what goes in comes out //10\% of the energy/power is lost 5any reference to loss of energy/power/eddy currents(3)
Question 1056 marks
What 3×3
releasing/ giving off / emission 3
electrons 3
(from) hot (surface) 3
Name 4×3
A filament/heater 3
B cathode 3
C attracts electrons/ focus/gives beam 3
D screen 3
B and C reversed maximum 3×3
Functions 2×6
A heats (the cathode)
B source of electrons
C attracts electrons/ focus/gives beam
D (fluorescent screen) detects electrons // converts E_{k} to light
any two 2×6
Deflected $\quad 6 \mathrm{~h} / \mathrm{m}$electric field/electrode/magnetic field/magnet/X-Y plates6
Use 3
TV/ X-ray machine/oscilloscope/ computer monitor /heart monitor/ECG/ brainmonitor/EEG/etcany one 3
Sketch $3 \times 3+2$
heater, cathode, anode, target, high voltage any three 3×3
correct arrangement for any three of the above 2
Why 3
protection/safety 3

Question 1156 marks

(a) release/leakage 4
of radiation/radioactive materials/energy (due to a mishap/fire/explosion) 3
(b) splitting of a nucleus/atom (into two parts) 7
reference to splitting, /releasing energy/neutrons/ $\gamma /$ radiation (4)
(c) coolant, fuel rods, control rods, shielding, moderator, core
any two 7
one correct(4)
(d) rate of decay /activity (of a radioactive substance)) 7
reference to number of emissions (4)
(e) iodine, caesium, radon, carbon 14, etc. any two 7
one correct (4)
(f) time it takes 4
(for) half the radioactive nuclei/atoms/substance to decay // activity to halve 3
(g) (radiation which is) in the environment/atmosphere/air/always there/due torocks/cosmic/natural (radiation)7
partial answer (4)
(h) cancer, skin burns, sickness, kills cells genetic effects, death, cures cancerous effects, sterilise, etc.

Question 1256 marks

$\begin{array}{ll}\text { Part(a) } \\ \text { Pressure } & 2 \times 3+3\end{array}$
force 3
(per unit) area 3
$P=\frac{F}{A}+$ explanation of symbols
(unit is) Pascal/Pa $\quad / / \mathrm{N} \mathrm{m}^{-2}$

Instrument 6 or 3

bourdon gauge/pressure gauge/manometer/barometer 6
gauge/meter (3)

Explain	$\mathbf{3} \times \mathbf{3}$	
pressure outside greater than pressure inside/vacuum // atmosphere (outside) Calculate // no air inside to push out	3	
$50(\mathrm{~Pa})$	$\mathbf{4}$	3
		4

Part (b)
Define $\quad 3 \times 3$
heat/energy (required to) 3
raise/change temperature 3
of 1 kg by $1^{\circ} \mathrm{C} / 1 \mathrm{~K} 3$
Calculate energy 3×3
$=85$ 3
$\mathrm{Q}=(1.5)(4180)(85) \quad 3$
$\mathrm{Q}=532950(\mathrm{~J}) \quad 3$
Calculate power $\quad 2 \times 3$
$\mathrm{P}=(532950) \div(4 \times 60) \quad 3$
$2221 \pm 1(\mathrm{~W}) \quad 3$
Why $4 \mathrm{~h} / \mathrm{m}$
more efficient/ hot water will rise/heats quicker/ water poor conductor/etc
Part (c)
Define 2×3
charge 3
divided by potential 3
$\frac{Q}{V}$ (3)
explain the notation(3)
What $2 \times 3+4$
(in diagram A) bulb lights 3
(in diagram B) bulb does not light 3
reverse order (3)
explain: the capacitor conduct a.c./capacitor in A charging-discharging 4
Demonstrate 4×3
apparatus e.g. circuit, battery and capacitor 3
procedure connect to battery to charge capacitor 3
disconnect capacitor from battery, touch leads from capacitor 3
observation spark observed/current flows 3
a labelled diagram may merit marks
Part(d)
Lines 2×3
diagram shows at least two lines between poles 3
direction from N to S 3
Describe 4×3
apparatus power supply and conductor 3
magnetic field 3
procedure turn on power supply/current 3
observation conductor moves/deflects 3a labelled diagram may merit marks
Two factors 2×3
strength of magnetic field $/ B$
size of current flowing $/ I$
length of conductor in magnetic field $/ l$
angle between conductor and magnetic field/_/sin_mediumany two 2×3
Device 4motor, (moving coil) meter, loudspeaker, named device which containsmotor e.g. electric shaver4

